Genetically Separable Functions of the MEC-17 Tubulin Acetyltransferase Affect Microtubule Organization
نویسندگان
چکیده
BACKGROUND Microtubules (MTs) are formed from the lateral association of 11-16 protofilament chains of tubulin dimers, with most cells containing 13-protofilament (13-p) MTs. How these different MTs are formed is unknown, although the number of protofilaments may depend on the nature of the α- and β-tubulins. RESULTS Here we show that the enzymatic activity of the Caenorhabiditis elegans α-tubulin acetyltransferase (α-TAT) MEC-17 allows the production of 15-p MTs in the touch receptor neurons (TRNs) MTs. Without MEC-17, MTs with between 11 and 15 protofilaments are seen. Loss of this enzymatic activity also changes the number and organization of the TRN MTs and affects TRN axonal morphology. In contrast, enzymatically inactive MEC-17 is sufficient for touch sensitivity and proper process outgrowth without correcting the MT defects. Thus, in addition to demonstrating that MEC-17 is required for MT structure and organization, our results suggest that the large number of 15-p MTs, normally found in the TRNs, is not essential for mechanosensation. CONCLUSION These experiments reveal a specific role for α-TAT in the formation of MTs and in the production of higher order MTs arrays. In addition, our results indicate that the α-TAT protein has functions that require acetyltransferase activity (such as the determination of protofilament number) and others that do not (presence of internal MT structures).
منابع مشابه
Microtubules: MEC-17 Moonlights in the Lumen
New research characterizes a tubulin acetyltransferase that acts inside the microtubule lumen and has two separable activities that greatly affect microtubule architecture and functionality.
متن کاملRegulation of adipogenesis by cytoskeleton remodelling is facilitated by acetyltransferase MEC-17-dependent acetylation of α-tubulin.
Cytoskeleton remodelling is a prerequisite step for the morphological transition from preadipocytes to mature adipocytes. Although microtubules play a pivotal role in organizing cellular structure, regulation of microtubule dynamics during adipogenesis remains unclear. In the present paper we show that acetylation of α-tubulin is up-regulated during adipogenesis, and adipocyte development is de...
متن کاملMEC-17 deficiency leads to reduced α-tubulin acetylation and impaired migration of cortical neurons.
Neuronal migration is a fundamental process during the development of the cerebral cortex and is regulated by cytoskeletal components. Microtubule dynamics can be modulated by posttranslational modifications to tubulin subunits. Acetylation of α-tubulin at lysine 40 is important in regulating microtubule properties, and this process is controlled by acetyltransferase and deacetylase. MEC-17 is ...
متن کاملStructural and functional characterization of the α-tubulin acetyltransferase MEC-17.
Tubulin protomers undergo an extensive array of post-translational modifications to tailor microtubules to specific tasks. One such modification, the acetylation of lysine 40 of α-tubulin, located in the lumen of microtubules, is associated with stable, long-living microtubule structures. MEC-17 was recently identified as the acetyltransferase that mediates this event. We have determined the cr...
متن کاملPosttranslational Acetylation of α-Tubulin Constrains Protofilament Number in Native Microtubules
BACKGROUND Microtubules are built from linear polymers of α-β tubulin dimers (protofilaments) that form a tubular quinary structure. Microtubules assembled from purified tubulin in vitro contain between 10 and 16 protofilaments; however, such structural polymorphisms are not found in cells. This discrepancy implies that factors other than tubulin constrain microtubule protofilament number, but ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 22 شماره
صفحات -
تاریخ انتشار 2012